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Large-amplitude unsteady flow in liquid-filled 
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Unsteady, large-amplitude motion of a viscous liquid in a long elastic tube is 
investigated theoretically and experimentally, in the context of physiological 
problems of blood flow in the larger arteries. Based on the assumptions of long 
wavelength and longitudinal tethering, a quasi-one-dimensional model is 
adopted, in which the tube wall moves only radially, and in which only longi- 
tudinal pressure gradients and fluid accelerations are important. The effects of 
fluid viscosity are treated for both laminar and turbulent flow. The governing 
non-linear equations are solved analytically in closed form by a perturbation 
expansion in the amplitude parameter, and, for comparison, by numerical inte- 
gration of the characteristic curves. The two types of solution are compared with 
each other and with experimental data. Non-linear effects due to large amplitude 
motion are found to be not as large as those found in similar problems in gas- 
dynamics and water waves. 

~~ ~~_____________  ~ ~ _ _ _ _ _ _ _  
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A 
C 
D 
P 
G 
h 
i 

I 
N 
P 

Jo, 4 

Q 
Qo 
R 
Re 

S 

internal tube area 
wave speed; C2 = (A/p) (dP/dA)  
internal tube diameter 
dimensionless wall. friction, d /pAC;  
elastic constant 
tube wall thickness 

Bessel functions 
tube length 
reduced frequency, wl/C,, 
pressure difference across tube wall 
instantaneous volume flow rate at any section 
amplitude of oscillatory component of Q at x = 0 
tube internal radius 
Reynolds number based on maximum volume flow and on Do; 

J-1 

Re = 4Q0( 1 + s)/.rrOo v 

ratio of steady volume flow to amplitude of oscillatory volume flow at 
x = o  
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t 

W 

X 
Y 

2, 

2 

a 
e 
h 

P 
V 

‘5 
P 
7 

0 

c 

time 
instantaneous mean longitudinal velocity at  any cross-section 
hoop tensile force in tube wall per unit length 
length co-ordinate 
see (31) and (33) 
see (31) and (33) 
unsteady flow Reynolds number, (wB2/v)* 
amplitude parameter, Qo/A0 C, 
wavelength 
fluid viscosity 
kinematic viscosity 
x - i Y  
density of liquid 
wall shear force per unit length of tube 
circular frequency of motion 
normalized inverse area, Ao/A.  

Xubscripts 

n denotes conditions with no pressure difference across tube wall 
0 denotes conditions with tube inflated but no motion 
1, 2 order of terms in perturbation solution. 

1. Introduction 
The object of this investigation is to develop a theory for large-amplitude, un- 

steady flows of a viscous incompressible liquid in a long elastic tube, and to test 
this theory by experiments designed for that purpose. Standing waves with har- 
monic excitation are chosen for the experiments because of the ease of accurately 
setting boundary conditions. However, the analytical methods developed are 
equally applicable to travelling waves or to any arbitrary boundary conditions at 
the tube ends. 

The results are relevant to blood flow in the larger ducts of the human vascular 
system, as well as to other unsteady flow problems where the compliance of the 
liquid is negligible compared with that of the tube wall. 

A one-dimensional model for the flow is developed based on the assumptions 
that (i) the wavelength is long compared with the diameter, (ii) the tube is con- 
strained from longitudinal motions, (iii) the liquid is incompressible and New- 
tonian, and (iv) the tube material follows the stress-strain law given by kinetic 
theory for rubber. 

2. Range of the investigation 
Previous work 

Waves in an elastic tube filled with an incompressible liquid can be excited in 
many ways, e.g. transversely, in torsion, in longitudinal stretch, and by bulging. 
For each type of wave there is a wave speed and a corresponding set of suitable 
boundary conditions. 



Large-amplitude unsteady flow 515 

A recent survey article by Rudinger (1966) summarizes the theoretical litera- 
ture of the subject, gives some comparisons with experiments, and has an exten- 
sive bibliography. The theories fall into two classes: (i) small-amplitude, linear 
theories, with the non-linear inertial terms of the equation of motion absent, and 
with a laminar treatment of friction (Womersely 1957; Morgan & Kiely 1954); 
and (ii) non-linear theories, using numerical integrations of the characteristics, 
and with various ad hoe treatments of laminar and turbulent friction (Lambert 
1958; Streeter, Keitzer & Bohr 1964). 

In  the linear laminar-flow theories of Womersley (1957) and Morgan & Kiely 
(1954) an axisymmetric motion is treated, with the tube free to bulge and to move 
longitudinally. Two wave speeds are found, but both Womersley and Morgan & 
Kiely ignore one wave speed and its related boundary conditions. When the 
boundary conditions for either pressure or flow at the ends of the tube are given, 
but only one speed is admitted, the necessary additional conditions on the longi- 
tudinal motion of the ends cannot be given. Consequently the theories of Womers- 
ley and of Morgan & Kiely predict an excess longitudinal motion that has not 
been observed. 

Lambert (1958) treated the human aorta as a one-dimensional, non-linear, 
inviscid problem by numerical integration of the characteristics, but his results 
are unfortunately meaningless since he took the flow speed to be many times the 
wave speed, instead of vice versa, owing to the omission of the numerical factor 
4980 in the computation of wave speed. 

Streeter et al. (1964) dealt with unsteady flow in the larger vessels of the 
arterial system of a dog by a one-dimensional numerical integration of the 
characteristics, using Poisseuille’s law for laminar friction and the empirical 
relationship between friction coefficient and Reynolds number for steady turbu- 
lent pipe flow, and neglecting the phase lag between instantaneous volume flow 
and wall shear stress. The pressure-area relationship employed for the tube is in 
serious question on three counts: first, the use of a constant Hooke’s modulus; 
second, neglect of the relationship between radial and longitudinal strains involv- 
ing Poisson’s ratio; and, third and most important, the assumption that the 
fractional changes in diameter are negligible compared with the fractional 
changes in pressure, an unwarranted assumption contradicted by the numerical 
results themselves. 

In  the present state of affairs, it would be useful (i) to develop a non-linear 
theory in closed form, at  least to second-order terms, and to establish its range of 
validity by numerical experiments in which it is compared with numerical 
integrations of the characteristics, (ii) to incorporate in the theory more accurate 
representations of the wall friction, (iii) to employ as part of the theory a pressure- 
area relationship more representative of rubber-like materials and to establish 
the effects of this on non-linear behaviour, and (iv) to perform related simple 
experiments designed not to simulate an animal arterial system, but rather to 
test the theoretical approximations and assumptions. 

The present investigation attempts the foregoing objectives. 

33-2 
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The motion to be considered 

Arteries in the human vascular system are constrained longitudinally at  points 
much closer than one wavelength apart. Hence longitudinal motions are negli- 
gible. We therefore assume that longitudinal displacements are zero and we limit 
the investigation to purely axisymmetric bulging modes, such as are caused by 
the injection of fluid at  one end. 

For small amplitudes a sinusoidal excitation a t  one end causes the tube to 
vibrate in a natural mode where motions at all points are sinusoidal functions of 
time. A harmonic excitation is therefore chosen for study because deviations 
from sinusoidal motion are then due to non-linear effects only and can be used as 
a simple test for non-linearity. 

Range for the larger 
human arteries 

Greater than 100 

17.0-3.0 

Not applicable 
0.5-0.1 
0.28 
0.1 

1.0-5.0 
0.5-3.0 

0.18-0.01 

10,000-500 

- 

2.5-5.0 
5.0-10.0 

TABLE 1 

Range in 
present experiments 

Greater than 1000 
0.19-0.007 
25-1.9 
28,000-120 
0.5-14.0 
9.0-0 
0.2 
0.13 
1.2 
0.635 
0.07-2 
1-75 
11 

Parameters for the motion 

Table 1 shows a comparison of the important parameters of the present experi- 
ments with physiological values for the larger arteries of the human vascular 
system. The physiological value for w is taken as the circular frequency of the 
first harmonic of the heart output. 

No attempt was made to model the anomalous viscosity of blood. The arteries 
were taken to be thin-walled elastic tubes whose mechanical properties are 
accounted for by the quantities C,, and C,. 

3. The governing equations 
Fluid dynamical conservation laws 

Womersley (1957) has shown from order-of-magnitude arguments that when the 
wavelength his much greater than the tube radius R, the radial accelerations and 
pressure gradients are negligible. Noting from table 1 that h/R is indeed very 
large, we consider a one-dimensional model in which only longitudinal fluid 
accelerations and forces are included. To simplify the problem further we ignore 
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the actual velocity profile except as it affects the wall friction, and we deal only 
with the mean velocity v parallel to the tube axis. 

Observing that the cross-sectional area A depends on both position x and time 
t ,  and that the liquid is incompressible, we express the conservation of liquid 
volume by 

The one-dimensional momentum equation is 

ap av av 7 
z + p - + p v -  = -- 

at ax A’ 

in which the momentum flux at  any section is approximated as pAv2, which is 
exact only for a flat velocity profile. However, it has been shown by Olsen (1966) 
that this approximation produces a small error only in the non-linear terms. In  
an extreme case, namely Poiseuille flow, the true momentum flux is +pAv2. 

Since P is later assumed a function of A alone, we introduce the definition 

cz = ( A / p ) ( d P / d A ) ,  (3) 

where C is later identified as the wave speed. Then, since 

a q a x  = (dP/dA)(aA/ax) = (cZp/A)(aA/ax), 

C ~ ~ A I ~ X  + A av/at + AV avlax = - r/p. 

equation (2) becomes 

(4) 

Por the calculations of the relation between pressure and tube area, we may 
ignore longitudinal stresses in the tube wall as well as that part of the membrane 
force produced by longitudinal curvature, inasmuch as a large value of AIR im- 
plies that both the longitudinal slope and the longitudinal curvature of the tube 
wall are small. Moreover, the density of the tube wall is of the same order as that 
of the liquid; therefore, we may neglect the radial inertia of the tube wall for the 
same reason that we neglected that of the liquid. With the foregoing assumptions, 
the simple statical equilibrium between hoop stress and excess internal pressure 

yields W = PR. 

Since the tube is longitudinally constrained, the relation between the hoop 
tension per unit length, W ,  and the extension ratio, R/R,,, is the same as that 
given by Treloar (1958) as 

(5) W = Ghn[(R/Rn) - (Rrn/R)31, 

where G is an elastic constant which is a property of the particular rubber used. 
Equation (5), derived from kinetic theory, has been shown experimentally 
(Treloar 1958) to be valid for both large and small deformations. Hence 

P = ( ~ P G )  [1-(An/A)21, 

where Ck = 2Ghn/pRn, 

from which, with (3), C = Cn(An/A). 
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Nicholson (1966) has shown that the large-deformation stress-strain law of (5) ,  
(6), (7) and (8), in combination with the non-linear hydrodynamic terms, leads 
fortuitously to simpler end results than does a Hookean stress-strain law.? 

5 

FIGURE 1. Experimental data for inflation pressurep us. area A ,  plotted with the variables 
of (6). The straight line is the best fit to the data. 

Experimentally derived properties 

Equation ( 7 )  shows that the quantity pCg contains all the static mechanical 
properties of the tube relevant to the wave propagation. Measurements of this 
quantity and of the liquid densityp, therefore, establish the wave speed. Equa- 
tion (6) shows that &pCk can be easily determined as the slope of a line of P us. 
[l - (A,/A)2]. Figure 1 gives data from experiments in which the pressures P 
required to inflate the tube to different areas A were observed. That the data lie 
on a straight line shows that (6) is correct within the experimental range; the 
slope yields the value of C, as 11.23 m/s. 

Equation (6) is found experimentally to be valid only up to an area ratio A/A, 
of about 2.5 (Nicholson 1966). Beyond this point, a three-dimensional state of 

t The corresponding relations derived using Hooke's law with the conditions of zero 
longitudinal strain and Poisson's ratio of 4 are (Olsen 1966): 

P =  2PC:[(An/A)'- (An/A)l, 
cz = C32(A,IA) - (A,/A)+l, 

where (2: 3 Ehn/2pRn(1-~'); v = $. 

Solutions corresponding to these are given by Olsen (1966). 
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strain can be found which, for the same tube volume, requires less internal 
pressure. The tube is unstable with respect to transition to this mode and large 
bulges appear on the tube. These bulges permanently deform the tube and ruin 
it for further experiments. 

The above instability places a useful upper limit on the internal pressure in the 
tube. A useful lower limit also exists. If the pressure falls below the external 
pressure, the tube collapses unstably rather than remaining round, and no longer 
obeys (6). The collapse introduces very large non-linear effects not observed 
physiologically, and should be avoided experimentally through sufficient initial 
pressurization. 

1 *o 

I 0 Data from timing a pulse I 
-Relation of equations (6) and (8) 

0 01 0.2 0-3 0.4 
PIpC;, dimensionless pressure 

FIGURE 2. Experimental values of wave speed G for a small pulse, us. inflation pressure P ,  
compared (solid curve) with the value of G calculated from figure 1 and equations (6) 
and (8). 

The solid curve of figure 2 shows ClC, vs. PIpCk as calculated theoretically 
from (6) and (8). We shall show later that Cis the speed of a small-amplitude wave 
in a frictionless fluid. The experimental points in figure 2 were determined, at  
different pressure levels P,  by determining C, under static conditions from the 
slope of the experimental line of figure 1, and by measuring C through timing the 
motion of a very small pressure pulse. The observed speeds, C, are slightly higher 
than those corresponding to the mechanical properties under static conditions. 
These differences are related to the time-dependent properties of the material. 

The elastic constant G ,  which in figure 1 was determined statically, is in fact 
slightly dependent on the frequency. Figure 3 shows the relative force resulting 
from stretching a strip of rubber from the experimental tube at  various frequen- 
cies of sinusoidal motion but at  a fixed amplitude of about 50 % strain. The rubber 
appears stiffer a t  higher frequencies. In  later comparisons with experimental 
results, C, is therefore adjusted upward for higher frequencies, as follows: since 



520 John H .  Olsen and Ascher H .  Shapiro 

Q is proportional to the relative force and C, is proportional to JG, C, as deter- 
mined from figure 1 is corrected by multiplying the square root of the relative 
force of figure 3. 

1 1 1 I 1 

I Value used to correct C,, 
Data 

2 
$ 1.08 
PI 
0 c, 

-3 
& 1.04 

G? 
$ 
2 1.00 

z 

8 0 w 

.* 
3 

096  
0.00 1 0 0  1 010 1 -0 100 

Frequency (cis) 

FIGURE 3. Effect of frequency on elastic stiffness of tube makerid. 

The tube material showed negligible hysteresis effects but did exhibit a per- 
manent strain of about 5% when stretched for the first time. After this initial set, 
it behaved like an elastic material except for the slight frequency dependence 
of G. 

A ~ ~ r o x i m a t i o n  of the wall friction 

The tube is very long, hence we neglect entrance effects near the ends of the tube. 
Since AIR is very large, examination of the full continuity equation (including 
radial velocities) shows that the radial velocity is very much smaller than the 
longitudinal velocity. Therefore the longitudinal velocity profile at any section is 
virtually the same as if the tube were rigid. Consequently, the local shear force T 

a t  the wall is assumed to be the same as in a rigid tube of the same diameter and 
having the same local conditions of flow history. 

The exact relation for laminar flow in a rigid tube of constant area. With purely 
sinusoidal flow in a rigid tube, Q = Im (QOeiol), the exact solution (Womersley 
1957; Schlichting 1960) for T is 

where 

and a = (wR2/v)3. 

Thus, T is linearly related to Q by a complex constant that is a function of a. 
Womersley (1957) has provided tables of the modulus, Mlo, and of the argument, 
el0, for values of a from 0 to 10, as well as series expansions for ct greater than 10. 
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With incompressible flow in a rigid tube of constant area, the problem is linear 
because the non-linear inertial terms in the equation of motion vanish. Thus a 
steady flow superposed on the oscillating flow requires that we simply add the 
Poiseuille shear force to that given above for oscillating flow. The Poiseuille shear 
force per unit length is r = 8n-,uQ/A for a steady flow. Then, writing the total flow 
as Q = Q0(is+ei"'), where the physical flow is the imaginary part of this, the 
corresponding r is 

This relation is valid only for a sinusoidal flow with a steady component of 
arbitrary size. In  a more general flow which is an arbitrary function of time the 
shear force depends not only on the instantaneous total flow, but also on the time 
history of the flow. The phase angle introduced by the complex constant rela- 
ting r and Q in (9) accounts completely for the time history dependence only in 
the sinusoidal case. 

An approximate relation for laminarflow in a rigid tube. Numerical integration 
of the characteristics curves turns out to be much simplified if r is linearly depend- 
ent only on the instantaneous value of the total flow, irrespective of the phase. 
This would be the case if in,ua2 (MG1e-ialo - 1) were purely a real number. Making 
the approximation that r and Q are related by only the real part of this constant, 
we get 

r 

where the imaginary part of (9) has already been taken so that r and Q are the 
actual physical values. This approximation is used only in computational experi- 
ments where the perturbation solution is compared with the numerical integra- 
tion of the characteristics. However, the approximation has some justification. 
First, we note that it affects only the unsteady portion of the flow. Later, with 
reference to figure 4, we note that the unsteady friction terms serve only to deter- 
mine the values of two parameters X and Y as functions of a, where Y is related 
to  the damping of the waves and X modifies the apparent wave speed. The 
approximation discussed here turns out to be accurate for high values of a and 
for very low values of a, and is at no point very poor. 

The approximation for turbulentflow. The large Reynolds stresses in a turbulent 
flow cause the velocity profile to adjust to a change in flow more rapidly than it 
would in a laminar flow, and they also maintain a relatively flat velocity profile. 
As a heuristic approximation we assume that the adjustment time for a change in 
velocity profile is small compared to the period of the motion,which is equivalent 
to taking the flow as quasi-steady for the purpose of estimating turbulent friction. 

For Reynolds numbers between 3000 and 30,000 the empirical friction data for 
a smooth pipe may be expressed as (Rohsenow & Choi 1961) 

or 
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Use of the rigid tube resuits for the elastic tube. In  applying the foregoing approxi- 
mations for the wall friction, the diameter of the elastic tube is assumed not to 
change with x or t. This fixed diameter is taken at the state (subscript 0) for which 
the tube is at rest, but inflated to the volume about which the oscillations occur. 
This procedure introduces some error in the friction, but friction contributes only 
a small part of the total solution. 

4. Theoretical solutions 
The mathematical problem 

The problem is to solve the set of equations (l), (4) and (8) with T given by one of 

With the experimental apparatus we can produce the combination of a steady 
throughflow Qos together with an unsteady flow which is sinusoidal at  the inlet 
and which is made to vanish at  the exit. The boundary conditions are therefore 
formulated as follows: 

(91, (10) or (11). 

at x = 0:  A v  = Q,(s+sinwt), (12) 

at x = 1: Av = Qos. (13) 

Although the equations are hyperbolic, no initial conditions are necessary be- 
cause we are seeking the ultimate periodic solution after the effects of starting the 
motion have damped out. 

Before proceeding with the solution, we comment on a seeming paradox, 
Physically, it  would seem that we could prescribe A in addition to Q because the 
experimental tube is clamped at its ends over rigid pipes. But the equations admit 
of only two, not four, boundary conditions. However, the theory does not pretend 
to take account of the regions at  the ends where the area adjusts rapidly to that 
of the connecting rigid tubes, inasmuch as pressure differences arising from longi- 
tudinal curvature and from tube-wall slope have been neglected. The adjustment 
zone at  an end, which zone is actually only a fraction of a tube diameter in length 
for a thin-walled tube, is excluded from the theory. Thus the areas of the connect- 
ing rigid tubes are not relevant. Outside the narrow zone of area adjustment at  an 
end, the area is determined by the pressure according to ( 6 )  ; by using this equation 
at  the end itself, we introduce an error in the adjustment zone, which however has 
a negligible effect on the solution for the entire tube. 

The equations in dimensionless form 

To simplify the algebra of the problem we now write the governing equations and 
their boundary conditions in dimensionless form. The following dimensionless 
variables are substituted into the governing equations 

5 E A,/A; v' = vlC,,; CA = Cn/Co; t' = Cotjl; 

x' = x/l; e = Q,/A,C,; N = wl/Co; F = rl/pAC,2. 

Equation (1) and (4) then take the dimensionless forms 

<avpx-va~px-agpt  = o, 
avpt + v avpx - cayax + F = 0, 
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where the primes have now been dropped, and it is to be understood henceforth 
that we are dealing with the normalized forms of all variables. 

The quantity P is given as a function of v by one of the three friction relations, 
(9), (10) or (11). For laminar flow, 

F = sS[+V~, (16) 

q = iN(My,le-t"lo- 1); S = __ [ 877 - &-az (M,-d e-ielo - 1 )I 9 
islp 

CO A0 
where 

when v and 5 are regarded as complex and the exact relation (9) is used; or where 

when v and 6 are regarded as purely real numbers and the approximate relation 
(10) is used. 

For turbulent flow, corresponding to (1 l ) ,  

where 

F = pc~z, 
p = 0~158(1/D0)(p/pCoDo)f. 

The boundary conditions, (12) and (13), take the normalized forms: 

at  x = 0: 

at x = 1: 

v = s[(s+sinNt), 

v =s@. 

The linear frictionless solution 

Before solving the full problem, it is helpful to get an idea of the form of the solu- 
tion by dropping the friction terms and considering a motion so small that 6 is 
almost constant and quadratic terms in v are negligible. The equations then re- 
duce to the classical linear wave equation 

a2vlaxZ - aZv/atz = 0, 

v = f(x+t)+g(x-t). 

which has the general solution 

Thus, the dimensionless propagation speed is unity, while, the physical value of 
Co is the propagation speed for frictionless waves of small amplitude. 

With the boundary conditions (18) and ( 19), the solutions are 

v/s = s + [sin N( 1 -%)](sin Nt)/sin N, 

(6-  l)/s = [cos N( 1 - x)](cos Nt)/sin N. 

(21) 

( 2 2 )  

These represent standing waves which blow up at  resonance when N is an 
integer multiple of 7r. We can expect that friction will act to suppress the motion 
at resonance, and that the non-linear effects will distort the waves so that the 
motions will no longer be sinusoida,l in time. 



624 John H .  Olsen and Ascher H .  Shapiro 

The Characteristic equations and their implications 

Equations (14) and (15) form a hyperbolic system and, therefore, possess charac- 
teristic curves. The equations of the characteristic curves are found by standard 
methods (Crandall 1956) to be 

(23) 

for the physical characteristics, which propagate at the physical speed C, 

(24) 
relative to the fluid; and dv = 

for the compatability characteristics. 
By considering a frictionless wave of finite amplitude travelling in one direc- 

tion (a simple wave) we can demonstrate a remarkable property. Suppose it 
travels to the right. The slope of a right-running characteristic is given by the 
upper sign in (23) : v + g. Now, since both v and [ vary with position on the wave a t  
any instant, we would normally expect the wave to steepen or flatten as it travels 
down the tube. But this is not so. To determine the relation between v and [ as 
we go from one right-running characteristic to the next, we use (24) with the 
lower sign, which relates v and [as we go along a left-running characteristic, and 
with P = 0, from which it is evident that v + [ is constant in the simple right- 
running wave. It follows that every part of the wave moves with the same speed 
and that the wave neither steepens or flattens. 

This extraordinary result depends on the particular pressure-area relation for 
the tube. For instance, this result cannot be shown when the pressure-area rela- 
tion derived from Hooke’s law is used.? By a combination of non-linear effects, 
the non-linear stress-strain law leads to a simple result normally associated with 
purely linear problems. 

dx/dt = v & g 

The exact solution for simple waves without friction 

From the fortuitous result above we can anticipate that a solution for frictionless 
simple waves can be found of the form f ( x  f t ) ,  just as in the case of linear waves. 
This solution is 

(25) I/[ = 1 - f ( x  T t ) ,  

where f is any arbitrary function and the - and + signs refer to right- and left- 
running waves respectively. These solutions may be verified by substitution into 
(14) and (15), with the friction term omitted. 

For right-running waves, v/gis the negative of the function f and it is precisely 
this quantity that is prescribed a t  x = 0 when the tube is driven with a flow 

t With the pressure-area relation for Hooke’s law, it may be shown that, in a simple 
wave, a compressive wave steepens for A / A ,  > 16/9, while a compressive wave broadens 
for 1 < A/& < 16/9. The converse applies for rarefaction waves. However, the rates of 
steepening and broadening are very small, much less than in problems of gravity or gas 
dynamical waves. This is the consequence of the facts that (i) with the pressure-area tube 
law of (6) there is no change of wave form at  all, and (ii) the pressure-area tube law of (6), 
when graphed, is very close to  the pressure-area tube law for a Hookean material. 
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source, Many other interesting relations between flow, pressure, tube diameter 
change, etc., can be shown by algebraic manipulation of these simple-wave solu- 
tions, and the effects of the non-linear terms can easily be seen. 

Perturbation solution with waves of both families 
No general solution with waves of both families has been found except for small 
amplitudes when the linear theory is applicable. Because of the non-linear terms, 
waves of one family change their speed and amplitude when they pass through 
waves of the other family. The non-linear theory must be used to describe this 
behaviour. Yet, because of the particular pressure-area relation for the tube, (6), 
(7)  and (S), a relatively simple perturbation theory is achievable owing to the 
absence of steepening phenomena associated with each single-wave family. 

The parameter e is the appropriate measure of the flow amplitude which con- 
trols non-linearities. As e goes to zero, the motion vanishes and the tube area has 
the undisturbed value, c = 1. We therefore expand 'u and 5 in perturbation series 
involving integer powers of e:  

2) = EV1(X,t)+€2V2(X,t)+ ..., 
c- 1 = 4 1  (x, t )  + €y2 (x, t )  + . .., 

where the functions vl, v2, . . . , el, c2, . . . are all assumed to be of order unity. The 
solutions for these functions are obtained below up to order e2, thus providing 
analytical extension beyond the linear theory. 

The laminar friction expression with the complex constant relating i- and v, 
equation ( Q ) ,  is easy to use in the solution for v1 and el because the solution for v1 
is harmonic with frequency N. Since the solution for c2 and v2 introduces higher 
harmonics, the friction terms not only become very complicated but the validity 
of (9) itself becomes questionable. Fortunately, large friction and large e do not 
occur together either physiologically or in the experiments reported here. We will 
therefore include friction while solving for 'ul and el, and negIect it while solving 
for v2 and I& In  the worst case calculated, friction represents a 20 yo contribution 
to the solution and non-linearities another 20 %, so that the total error due to 
neglecting friction in the non-linear terms is 20 yo of 20 yo, i.e. of the order of 

We substitute (27) and (28) into (14) and (15), and treat the laminar friction 
expression as described above. Then, sorting out the respective terms in powers 

4 %. 

of e ,  we obtain, for el, 

and for e2, 

avl/ax - ac1p = 0, 

avllat - aclpx + s + vl7 = 0, 

av,lax - ag2:,lat = vlaclpx - el avlpx, 
av,lat - ac2px = el aclpx - vlavllax, 

where the friction terms in the 8 equations have been dropped and the el solu- 
tions appearing in the latter equations are taken to  be frictionless. The boundary 
conditions sorted into powers o f s  become, for el, 

at x = 0: 

a t  x = 1:  

v1 = s+sinNt, 

vl = s, 
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at x = 0: v2 = Cl (s + sin Nt) ,  

a t  x = 1: v2 = Cis. 
The el solution is 

v1 = Im(is + eiNL[sin N [ (  1 - x)]/sin N [ } ,  

Cl = Im (i(x - 4) T + i[egNi[cos iV[( 1 - x)]/sin If[}, 

[ = X - i Y = M$ [cos (&el0) - i sin (&elO)], 

T = 8sN/a2, 

where 

1 .o 

0 

0 

I 5 10 15 20 

U 

I (Phase angd ignored (i0) 1 I 1 Exact relation (9) 

I 5 10 15 20 

5 10 15 20 
CL 

FIGURE 4. The functions X ( a )  and Y(u),  as given by (31). 

for the exact laminar friction relation of (9), or 

[ = X - i Y  = {$[1+(M,1sinslo)2]t+ 1}4-i{&[1+ (M,1sinelo)2]4- I}+, (33) 

for the approximate laminar friction relation of (10). Analysis of (29), (30), (31) 
and (32) shows that the parameter X modifies, the apparent wave speed and pro- 
duces dispersion, while Y is related to the damping of the waves. Figure 4 shows 
the values of 1 / X  and of Y as functions of a, both with and without the approxi- 
mation discussed earlier for the laminar friction in a rigid tube. 

The constant of integration +iT was evaluated by requiring that at Nt = &n the 
tube volume be the same as when E = 0. That is, with the tube driven by a piston, 
the tube has its original resting volume when the piston is at  the centre of its 
stroke. 
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When the imaginary part of the solution is taken the final result is 

v1= fa+gbsinNt+- 5 if cos Nt + s, 
a +b (34) 

adX- brX + bd Y + a rY 
a2 + b2 

-cosNt+(x-&)T Cl = 

(35) 
ad Y - brY - bdX - arX 

a2 i- b2 

where a = sinNXcoshNY; b = cosNXsinhNY; 

sin Nt ,  + 

d = cosNX(1-x)coshNY(l-x); r = sinNX(1-x)sinhNY(l-x); 

f 3 sin N X (  1 - z) coshNY( 1 - x); g E cos N X (  1 - x) sinhNY( 1 - 2). 

By setting X = 1 and Y = 0, we obtain the frictionless solutions of (21) and 
( 2 2 ) ,  which become infinite at resonance. If we consider only a very small amount 
of friction, so that X z 1 and Y z 0, the solutions reduce to forms containing the 

(36) 
expression H = sinN/[sin2N+ (NY)2cosN]. 

'Using this, an approximate nearly-frictionless solution for the first-order solu- 
tions in v1 and which has the property of remaining finite at resonance is 

v1 = s+HsinNtsinN(l-x),  

Cl = H cos Nt cos N (  1 - x). 

This solution is used to evaluate the (vl, gl) terms appearing in the (v2, c2) equa- 
tions. 

The solution for the e2 terms is then 

I sin 2N( 1 - x) - sin 2Nx 
sin N 

Hsin 2Nt [e cosN(1- 2%) -Hsin 2 ~ ( 1 -  x) + 
4 

v2 = 

+ Hs[xN sin N (  1 - x) + cos N (  1 - x)] cos Nt,  

- H(cos Nx)[sin N (  1 - x)] + H sin2 Nt sinN( 1 - ax) 

(39) 
c2 = $H sin N + Hs (sin Nt)[sin N (  1 - x) - Nx cos N (  1 - x)] 

cos 2Nt [cos 2N( 1 - 2) + cos 2Nx] 
+ 4sinN 

+ H 2  sin2N( 1 - x) cos2 Nt,  (40) 

where the constant (&H)sinN was evaluated by setting the tube volume at  
Nt = $n equal to its original resting volume as in the el solution. 

This solution in E ~ ,  containing approximations for the friction, should be valid 
for a laminar flow with any value of a at low 6 and for laminar flows with large a 
at higher 6.  Good accuracy is therefore expected within the physiological range 
of parameters. 

Integration of the characteristics 
The numerical integration of the characteristic curves follows conventional 
methods, in which the solution at a new point is calculated by stepwise integra- 
tion along the characteristics from the known values of the variables at  two earlier 
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points. We must formulate an initial value problem even though we seek here the 
steady-state periodic solution which we believe to be independent of transients 
arising from arbitrary initial conditions. These transients are damped out by 
viscosity. 

The solution is started by choosing initial values for v(x) and 6(x) at t = 0, as 
given by the linear solution, (34) and (35). Errors in this initial selection damp out 
as the computation marches forward in time, and the calculation is continued 
until the solution is periodic in time. This usually occurs in the time required for 
a wave to traverse the length of the tube about seven times. 

Solutions were obtained with both the turbulent friction relation (1 1) and the 
approximate laminar friction relation (10). 

5. Experimental apparatus and measurements 
The flow source 

Figure 5 shows schematically the flow circuit. Except for the elastic tube under 
test, all piping in the system is rigid. The pumping system is a positive-displace- 
ment device in that it produces specified flow wave forms a t  the tube ends in- 

\Elastic tube 

d 

FIGURE 5. Schematic diagram of experimental flow circuit. 

I 1  

xSupply tank 

dependently of pressure changes. Thus the characteristics of the pumping system 
do not enter the problem as would be the case if the pump operated by hydro- 
dynamic or peristaltic action. The oscillating and the steady sections of the 
system are each driven by a + hp motor. The total power entering the tube is 
however less than &, hp. 

A scotch yoke mechanism driving the displacement piston produces at the inlet 
to the flexible tube a pure sine wave flow containing no higher harmonics. Both 
the amplitude and frequency of the piston motion are adjustable. Steady flows, 
free of pulsation, and of any amplitude, are provided by a Moyno positive dis- 
placement pump driven through a variable speed drive. The flow a t  the tube exit 
is the steady flow component only. 
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The tube und its properties 
The pure latex tubes used, obtained from Kent Latex Products, Inc. of Kent, 
Ohio, are &-in. in inside diameter, &-in. in wall thickness and 35ft. in length. 
The relevant constant pC$ of each tube is measured directly by taking the slope 
of an experimental pressure-area curve as in figure 1. For the particular tube of 
figure 1 the value of C, is 11.23 m/s, with water in the tube. 

The tube is constrained longitudinally by cementing it to a rigid table along 
one edge (figure 6 )  with a very thin rubber cement in order to achieve as nearly as 
possible a line contact which, since h/R B 1, allows nearly axisymmetric radial 
displacements. The tube is joined to the rigid pipes of the flow system with hose 
clamps. 

The liquid used is either water or, for higher viscosities, a solution of corn syrup 
in water. 

FIGURE 6. Strain-gauge transducer for measurement of external diameter. The elastic tube 
is cemented to the plank in order to suppress longitudinal strain. 

Instrumentation 
The outside diameter at ten equally-spaced positions along the tube is measured 
with strain gauge transducers of the type shown in figure 6. Each transducer has 
a notch for concentrating the strain in the vicinity ofthe strain gauges and a small 
bar for distributing the force over about two diameters of length of the tube. The 
individual gauges are calibrated by depressing the bar with a dial indicator and 
adjusting the input voltage until the output is 0.05 volt per inch of deflexion. 
After this procedure is repeated at  each transducer, a known volume of fluid is 
added to the tube, and the resulting change in reading from each transducer 
noted. If these readings do not agree with the expected readings to within 2% the 
tube is rejected as being non-uniform. The sensitivity of the measuring system 
allows detection of diameter changes of 0-00005in. In  an experimental run the 
transducers are switched, one at  a time, to one channel of a two-channel strip- 
chart recorder. 

34 Fluid Mech. 29 
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The second channel is used to record piston position by means of a transducer 
comprising a precision potentiometer driven by a gear and rack attached to the 
scotch yoke mechanism. The signal from this transducer passes through a micro- 
switch tripped by a notch in the driver disk. With the known speed of the chart 
paper, the distance between spikes gives the period of the motion. 

The initia,l internal pressure in the tube is measured with a mercury mano- 
meter, read to 0.1 mm with a cathetometer. 

6. Results Experimental procedure 

An experimental run consists of the following sequence of operations. The tube is 
inflated to a pressure Po while the piston is a t  rest a t  the centre of its stroke. This 
pressure is recorded, and the manometer and supply tank are then shut off from 
the system. Then the zero points for each of the ten transducers are recorded on 
the strip-chart recorder. The piston stroke and frequency and the amount of 
steady flow are set and the flow is started. After a steady state is reached, a few 
periods of the motion are recorded from each transducer on the strip chart. 

Comparison between experimental and theoretical results 

The calculation of the theoretical result begins with the experimental values for 
Po, piston stroke and frequency, the amount of steady flow, and the fixed para- 
meters of the problem like Cn and the various dimensions of the apparatus. From 
these values the dimensionless parameters of the theory are calculated and used 
to predict the motion of the outside of the tube. Since the variable 5 of the theory 
refers to the inside dimensions of the tube, the theoretical value of the outside 
diameter is calculated from the theoretical inside diameter by using the assump- 
tions that the volume of the rubber is constant and that there is no longitudinal 
strain. 

The theoretically predicted value of the outside diameter is plotted as a func- 
tion of time to the same scales as the experimental recording on the strip chart, 
and the experimental curves are then traced through onto the theoretical plot for 
comparison. Figure 7 is an example of such a plot. 

Each curve in figure 7 shows the outside diameter as a function of time for a 
fixed position, x,  along the tube. The curve at  the bottom of the figure is recorded 
at the tube inlet, x = 0. Each higher curve is recorded one tenth of a tube length 
further down the tube; the top curve is for the far end of the tube, x = 1. The line 
t = 0 is shown on the curve taken at  x = 0 and is in the same horizontal position 
for the curves at the other values of x. The horizontal line AD = 0 is shown at 
each x-position. This line was not recorded for certain experimental runs so that 
only the shape, phase, and peak-to-peak amplitude of those runs could be com- 
pared with theory. Runs for which the line AD = 0 was recorded have a circle 
about the point t = 0, AD = 0, as in figure 8. The symbol P, for ‘perfect’, indi- 
cates that the theoretical and experimental curves being compared are virtually 
coincident. 

By producing theoretical curves based on laminar and turbulent friction, 
respectively, it was found that the turbulent friction approximation more closely 
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fitted the experimental data whenever the time average of the absolute magni- 
tude of the Reynolds number was greater than about 9500. Accordingly, for 
Reynolds numbers higher than this, results from the numerical integration of the 
characteristic curves with the turbulent friction approximation of (1 1) are pre- 
sented. For lower Reynolds numbers, the perturbation solution with the laminar 
friction relation of (9) was used. 

Tube exit (s = 1) Tube exit (s = 1) 

Outside 

change Time 

Tube inlet (s = 0) 
- 

Tube inlet (x=O) 
FIGURE 7 FIGURE 8 

FIGURE 7. Comparison of experimental results (dashed) with laminar perturbation theory 
(solid), for a run (rank 12) in which theory and experiment agree very well, E = 0.006, 
Re = 947, N = 1-74, s = 0, a = 9.65. 

FIGURE 8. Rank 23: 6 = 0.009, Re = 173, N = 7.36, s = 0, CL. = 7.22. Dashed curves: 
experimental. Solid curves : laminar perturbation theory. 

A plot like figure 7 was made for each experimental run and the plots were 
ranked qualitatively according to degree of agreement between theory and 
experiment. Table 2 shows the important parameters and degree of agreement 
for each run. The integers in the column headed ‘rank’ increase as the agreement 

34-2 
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becomes worse. The errors are classified ‘A’, ‘I” and ‘AS” according to whether 
the error is mainly one of amplitude, phase, or shape of the curve, respectively. 

Sample plots of various ranks are given in figures 7-10. 

EJTfects of the random errors of measurement 

Random errors are introduced by inaccuracies in experimental measurements 
and by the 2 yo variations of tube properties. Because of the qualitative nature of 
the rank rating, variations of & 5 in rank are not particularly significant. H.ow- 
ever, the random errors lead to trends that can be seen through this ? 5 scatter in 
rank. 

Consider the effects of errors in N and E on the error in the area change. This 
error is estimated by differentiating the linear frictionless result of (22) : 

Errors in area due to errors in N are seen to become important for large N and for 
values of N near resonance. In  fact, for runs with low Reynolds number that are 
similar except for the value of N (runs 19-22, 47-50, 52-55), the values of rank 
increase with N within the & 5 scatter. An exception is run 49 which is near 
resonance and therefore has a high rank. 

Rank 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Run 
21 
19 
20 
38 
15 
37 
48 
8 
7 
2 
3 
1 

47 
22 
16 
6 

34 
39 
25 
41 
53 

9 
50 
23 
31 
33 

(continued on p. 533) 

E 

0.008 
0.008 
0.008 
0-012 
0.011 
0.012 
0.009 
0.010 
0.010 
0.011 
0.022 
0.006 
0.009 
0.009 
0.011 
0.012 
0.072 
0.011 
0.062 
0.072 
0.065 
0.010 
0.009 
0.061 
0-006 
0.024 

Re 
1,400 
1,200 
1,200 

262 
3,100 

256 
175 

1,900 
1,800 
1,800 
3,600 

947 
179 

1,450 
1,800 
1,750 
1,440 

266 
10,300 

1,620 
1,320 
1,950 

173 
10,000 

125 
480 

N 
2-325 
0.469 
1.144 
1-823 
1.744 
1.892 
1.321 
1.627 
1.673 
1.744 
1.744 
1.744 
0-519 
6.916 
1.744 
1.815 
1.951 
1.765 
3.528 
1.951 
3.811 
1.577 
7.365 
0.684 
1.966 
1.951 

8 

0 
0 
0 
0 
0.724 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.122 
0 
0 
0 
0 
0 
0 

CL 

11.56 
4.99 
7.84 
3.53 
9.65 
3-61 
3.04 
9,27 
9.46 
9.65 
9.65 
9.65 
1.90 

19.30 
9.66 
9.89 
3.70 
3.45 

13.82 
3.69 
5.18 
9.10 
7.22 
6.06 
3.70 
3.70 

TABLE 2. Ranking of experimental runs in order of decreasing agreement with theoretical 
calculation. The column ‘Error ’ designates whether the discrepancy in the theory is mainly 
in amplitude ( A ) ,  phase (P)  or shape (8) 
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By comparing the linear solution of (35) with the frictionless result (22) we see 
that, as Y goes to zero, the phase angle between the two solutions goes to zero. 
The phase angle depends on N in addition to Y .  Errors in phase angle, therefore, 
arise from errors in N or Y and are most apparent for large Y .  Note that the runs 
with high a (i.e. low Y )  have fewer errors in phase than the runs with low a but 
with similar values of N (see, for instance, ranks 1 vs. 28,2 ws. 13,3 ws. 7,31 vs. 23). 

Comparison of laminar and turbulent calculations 
When the flow is turbulent rather than laminar, the results are affected in two 
distinct ways. First, the shear stress at the wall is greater for turbulent flow; and 
second, the shear stress is not linearly related to the flow. Consequently, the 
theoretical curves of diameter us. time for turbulent flow differ in amplitude and 
shape from the corresponding laminar curves. Compare, for instance, figure 9 b 
(laminar friction) with figure 9a (same data, but turbulent friction). The dia- 
meter, and hence pressure, fluctuations at  the inlet are greater for the turbulent 
case; the greater shear stress seems to make it more difficult to drive fluid in and 
out of the tube. Furthermore, the curve shapes are quite different. This com- 
parison also shows that the theoretical prediction is much improved at this high 
Reynolds number of 24,800 through the use of the turbulent friction stress. 

Rank 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

Run 

32 
36 
52 
42 
26 
4 

44 
24 
45 
5 

11 
10 
54 
12 
40 
27 
49 
14 
43 
13 
35 
55 
46 

E 

0.013 
0.013 
0.066 
0.072 
0.062 
0.066 
0.012 
0.060 
0-013 
0-165 
0.066 
0.066 
0.062 
0.066 
0.011 
0.052 
0.009 
0.012 
0.073 
0.012 
0-138 
0.062 
0.012 

R e  

252 
248 

1,330 
2,580 

10,200 
10,700 

428 
9,800 
1,392 

24,800 
19,200 
28,000 

1,250 
12,200 

280 
8,500 

176 
10,300 
3,730 

18,800 
2,620 
1,270 
2,530 

N 

1.961 
2.046 
1.518 
1-951 
6.916 
1-744 
1.961 
1.409 
1.951 
1.731 
1-744 
1-735 
7-436 
1.744 
1.718 

11.227 
2-533 
1.744 
1-966 
1.744 
1-97 

13.926 
1.966 

S 

0 
0 
0 
0.790 
0 
0 
0.701 
0 
4.55 
0 
0.793 
1.586 
0 
0.121 
0 
0 
0 
4.61 
1.57 
9.21 
0 
0 
9.03 

a 
3.70 
3.82 
3.27 
3.69 

19.31 
9.65 
3.70 
8.70 
3.69 
9.65 
9.65 
9.66 
7,25 
9.65 
3.38 

24.60 
4.21 
9.65 
3.70 
9.65 
3.70 
9.93 
3.70 

Notes:  (a)  A large steady flow can produce a large mean taper in tube, and a small error 
in the friction can be amplified. ( b )  Turbulent friction assumed in all runs thus marked. 
(c )  Large value of N .  ( d )  Near resonance. ( e )  Taper incorrect, perhaps because alternately 
laminar and turbulent. (f) Large N ,  large friction. (9) Large E ,  large friction, perhaps e2 
terms inaccurate in theory. 

TABLE 2 (continued) 
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Moreover, the rather good agreement between theory and experiment shown in 
figure 9a suggests that the simple, approximate way of dealing with turbulent 
friction discussed earlier is adequate for most purposes. 

Tube exit (x= 1) 
n 

A 

W 
9 
7 

M 
C 
0 
m 

c 

- 

Outside 

change Time 

Tube inlet (x = 0) 

(4 

Tube exit (x = 1) 

b 

W 
9 
7 
3 

2 
0 
m 
C 
0 

- 
.I 
Y .- 
8 
L 

Outside 
diameter 
change Time 

:: 

(6)  

Tube inlet (x = 0) 

FIGURE 9. Rank 36: E = 0.165, Re = 24,800, N = 1.73, s = 0, a = 9.65. Dashed curves: 
experimental. Solid curves : theoretical. (a) Characteristics theory, with turbdemt friction. 
( b )  Perturbation theory, with laminar friction. 

Neither of the theoretical calculations of figures 9a and 9b exactly match the 
small irregularities in the experimental curves. The reason is perhaps that the 
flow is turbulent for only portions of the cycle and that the irregularities result 
from alternate turbulent and laminar flow in time and space. 

Figure 10b shows the result of making a calculation for the parameters of 
figure 10a in which the Reynolds number is only 2530, but assuming turbulent 
rather than laminar flow. In  this experimental run, the large amount of steady 
flow produces a frictional pressure drop and hence a general taper in the tube. 
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The turbulent calculation (figure l o b )  predicts an excess taper and the laminar 
calculation (figure 10a) an insufficient taper and, as in figures 9a and 9 b ,  there 
are irregularities in the experimental curves. It seems again likely that the flow 
is not completely laminar or turbulent. 

Tube exit (x = 1) 

.\-.' r Time 
Tube inlet (x=O) 

Outside 
diameter 
change 

(a) 

I 

._<' 
*---. 

.--._ 

Tube exit ( x  = 1) 
I 

v- .-* '.- 
diameter 
change 
Outside L Time 

Tube inlet (x=O) 

(b )  

FIGURE 10. Rank 49: 6 = 0.012, Re = 2530, N = 1.97, s = 9 . 0 3 , ~ ~  = 3.70. Dashed curves: 
experimental. Solid curves : theoretical. (a)  Perturbation theory, with laminar friction. 
( b )  Characteristics theory, with turbulent friction. 

Figure 11 shows the peak-to-peak diameter fluctuations as a function of x for 
run 14. Because of the large amount of steady flow, turbulent conditions probably 
prevail throughout the entire cycle. The node in the motion is seen to be much 
sharper for the laminar calculation than for both the experimental data and the 
turbulent calculation. One effect of wall shear stress is to damp the waves; hence, 
with increased friction, the wave reflected from the far end of the tube is less able 
to cancel the incident wave at  the node. Thus, increased shear stress due to 
turbulence causes more tube displacement at  the nodes. 
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0 Data 
Laminar theory 
Turbulent rheory 

0 '. 
I I I I 

0 0 2  0 4  0 6  0.8 1 .o 
xl l ,  position along tube 

compared with calculations based on laminar and turbulent friction. 
FIGURE 11. Observed peak-to-peak diameter fluctuation as a function of z for 
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run 14, 

FIGURE 12. Numerical experiment, comparing perturbation theory with characteristics 
theory, under conditions of small laminar friction (a = 9.65, s = 0, N = 1.73). Dashed 
curves : characteristics theory. Solid curves : perturbation theory. (a)  Small amplitude, 
8 = 0.165. (6) Large amplitude, E = 0.495. 
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Range of validity of the perturbation solution 

The range of validity for the perturbation solution can be established by 
numerical experiments in which it is compared with the numerical integration of 
the characteristics. However, for this comparison the friction expression used in 
the two solutions must be the same. The approximate laminar friction relation 
of (lo), which is applicable, to both methods, is used. 

Tube exit ( x  = 1) 

Tube exit (x = 1) 

./- 

t 

Outside 
diameter 
change Time 

Tube inlet ( x  =0) 

(a) 

Tube inlet (x = 0) 

(b)  
FIGURE 13. Numerical experiment, comparing perturbation theory with characteristics 
theory, under conditions of large laminar friction (a = 34'0, s = 0, N = 1.97). Dashed 
curves : characteristics theory. Solid curves : perturbation theory. (a) Small amplitude, 
e = 0.138. ( b )  Large amplitude, e = 0.415. 

In  the perturbation solution friction is neglected in the second-order terms. In  
the characteristics solution the equations are solved exactly. For this reason the 
agreement between the two solutions will depend on the values of both e and a. 
Accordingly, the effects of increases in e were examined, with the other para- 
meters unchanged, for both a low-friction case (run 5) and a high-friction case 
(run 35). 

For values of e less than 0.05, perfect agreement was obtained between the two 
theoretical methods. 

With small laminar friction (a = 9-65), the comparative results for a three-fold 
increase in from 0.165 to 0.495 are exhibited in figures 12a and 12b. A similar 
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comparison for a three-fold increase in E from 0.138 to 0.415 is shown in figures 
13a and 136 for large laminar friction (a  = 3.70). Significant errors in the per- 
turbation solution appear for values of E as high as 0-4 or 0.5, but the perturbation 
solution with terms up to s2 is seen to be adequate for laminar flow within the 
range of physiological interest as given by the parameters of table 1. 

This work was supported in part by grant no. HDOl288 from the National 
Institutes of Health, U.S. Public Health Service, and was also aided by grant no. 
647 from the Massachusetts Heart Association and from the Essex North Chapter 
of the Massachusetts Heart Association. 

REFERENCES 

CRANDALL, S .  H. 1956 Engineering Analysis, oh. 6. New York: McGraw-Hill. 
LAMBERT, J. W. 1958 On the nonlinearities of fluid flow in rigid tubes. J .  Franklin Inst. 

MORGAN, G. W. & KIELY, J. P. 1954 Wave propagation in a viscous liquid contained in a 

NICHOLSON, H. 1966 Wave propagation in fluid filled elastic tubes, S.B. Thesis, M.I.T. 
OLSEN, J. H. 1966 Waves in fluid-filled elastic tubes. Doctoral Thesis, M.I.T. 
ROHSENOW, W. M. & CHOI, H. Y .  1961 Heat, Mass, and Momentum Transfer. New 

RUDINGER, G. 1966 Review of current mathematical methods for the analysis of blood 

SCHLICHTING, H. 1960. Boundary Layer Theorg, p. 299,4th ed. New York: McGraw-Hill. 
STREETER, V. L., KEITZER, W. F. & BOHR, D. F. 1964 Energy dissipation in pulsatile 

flow through distensible tapered vessels, pp. 149-177, in Pulsatile Blood Flow, edited 
by E. 0. Attinger. New York: McGraw-Hill. 

TRELOAR, L. R. G. 1958 The Physics of Rubber Elasticity, p. 95. Oxford . 
WOMERSLEY, J. R. 1957 An elmtic tube theory of pdse transmission and oscillatory flow 

266, 83-102. 

flexible tube. JASA 26, 323-328. 

Jersey : Prentice-Hall. 

flow. Proc. Biomed. Fluid Mechs. Symposium, Amer. SOC. of Mech. Engrs, N . Y .  

in mammalian arteries. WADC Tech. Rept. 56-614. 


